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ABSTRACT

In this article, we study the algorithmic and performance implications of different hinge and closure con-
straint modeling choices for closed-chain dynamics. Options for handling restricted inter-body relative
motion range from the use of minimal coordinate hinges, to non-minimal coordinate ones utilizing bilateral
constraints. In general, the closed-chain system model can be decomposed into a tree-topology sub-system
subject to a set of closure constraints. We study three approaches for modeling the dynamics of such sys-
tems and compare the computational performance of their corresponding algorithms. We observe that with
the use of structure-based, low-order algorithms, hinge based modeling offers significantly better simulation
performance over constraint based techniques.

1 INTRODUCTION

The subject of this paper is the dynamics of multibody systems with closed-loop topologies such as in Figure
1. The relative motion between adjacent bodies in a multibody system is constrained. Options for handling
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Figure 1: A closed-chain multi-
body system with an internal
closed loop constraint.

such inter-body constraints are to treat them as hinges, or as closure
constraints between the bodies. In the hinge approach, the constraint
is eliminated from the equations of motion by using minimal relative
coordinates to parameterize the allowable motion between the body pair.
On the other hand, the closure constraint approach employs non-minimal
coordinates and utilizes bilateral constraints and Lagrange multipliers to
enforce the restricted motion between body pairs. In this article, we study
the algorithmic and performance implications of different hinge versus
closure constraint modeling choices for closed-chain dynamics.

While the use of hinges leads to equations of motion with smaller di-
mension, the accompanying minimal coordinates exhibit a high degree
of dynamical coupling and a more complex formulation. However, the
added complexity can be mitigated by the use of structure-based, low-
order, recursive methods for the dynamics computations. In contrast,
the exclusive use of closure constraints leads to larger, but structurally
simpler form of the equations of motion. More generally, closed-chain
models contain a hybrid combination of hinges and closure constraints,
with the hinges being associated with a tree topology sub-system within the overall model. We study the
following three approaches for closed-chain dynamics that span the range of these modeling options:

Fully-augmented (FA) method: The first method is the fully-augmented (FA) dynamics method [6, 13, 17].
In this method, all bodies are modeled as independent bodies using absolute coordinates, and the restricted
relative motion is modeled via closure constraints as shown in Figure 2a. The advantage of this approach is
that the equations of motion are simple and easy to set up. The mass matrix of the tree sub-system is block
diagonal and constant. Sparse matrix solution techniques can be used to solve for Lagrange multiplier
constraint forces. Disadvantages include the use of a large number of non-minimal generalized coordinates,
the underlying differential-algebraic equation (DAE) structure of the equations of motion, and the need for
error control techniques to manage constraint error growth during a simulation.
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Figure 2: In the fully augmented model (a), all bodies are treated as independent bodies with inter-body
constraints. In the tree augmented model (b), the system is decomposed into a tree system together with a
minimal set of inter-body constraints. In the constraint embedding model (c), internal loops are aggregated
into bodies to convert the system into a tree topology system.

Tree-augmented (TA) method: The second method is the tree-augmented (TA) dynamics method [9, 16].
In this method, a minimal set of the inter-body constraints are “cut” to obtain the tree-topology sub-system1.
The maximal spanning tree based tree sub-system only has hinges as illustrated in Figure 2b. The overall
dynamics model consists of the minimal-coordinate dynamics model for the tree sub-system together with a
minimal set of closure constraints. The number of generalized coordinates and closure constraints is much
smaller compared with the FA model. The tree system’s mass matrix however is dense and configuration
dependent, though low-order recursive algorithms are available for solving the tree system dynamics without
requiring mass matrix inversion. The underlying formulation remains a DAE, but constraint error control is
only needed for the smaller set of closure constraints.

Constraint embedding (CE) method: The third method is the new constraint embedding (CE) dynamics
method [10]. This technique uses the TA model as a starting point – where its closure constraints are elim-
inated by aggregating bodies affected by the closure constraint into compound bodies as shown in Figure
2c. The transformed system has a tree topology with only inter-body hinges and no closure constraints.
The benefit of this minimal coordinates approach is that low-order tree algorithms can be directly used to
solve the dynamics. Also, this formulation results in an ordinary differential equation (ODE) instead of a
DAE, and constraint error control techniques are not required. This method however is more complex to
implement, since the aggregated bodies now contain multiple rigid bodies and have configuration dependent
geometry. While CE method shares the minimal coordinates attribute with projection dynamics techniques
[6, 17], its advantage lies in the preservation of the system’s tree topology that is necessary for the use of
the structure-based tree algorithms.

This paper includes a brief overview of the analytical theory for solving closed-chain system dynamics using
these approaches. In particular, we emphasize the use of structure-based, low-order recursive algorithms
for solving the tree sub-systems dynamics and for solving for the constraint forces. Simulations of several
small systems are used to cross validate the dynamics solutions from these three methods. A larger system
consisting of a six-wheeled vehicle with wishbone suspensions at each of the wheels is used to compare
the computational performance of these methods. Simulation runs for this system are carried out and the
growth rate of the constraint and fidelity error is compared for different integration time steps across the
methods. We hope that these results will help guide analysts in the judicious selection of dynamics modeling
approaches and structure-based algorithms for closed chain dynamics simulations.

2 DYNAMICS WITH LOOP CONSTRAINTS

As we have seen, each of the FA, TA and CE models consist of a tree topology sub-system subject to a set of
closure constraints. The specific details of the decomposition varies with the model type. For the FA model,

1The cuts and the spanning tree are non-unique in general.



the tree system is simply a collection of independent bodies, while the set of closure constraints is large. The
CE model represents the other extreme, where the entire model is a tree topology system, and there are no
additional closure constraints. The TA model is a hybrid, with a maximal spanning tree based tree topology
system, together with a minimal set of closure constraints. In this section we study the general approach
to solving the closed-chain equations of motion for such models consisting of tree topology systems with
closure constraints.

Using N to denote the number of degrees of freedom for the tree sub-system, the minimal coordinates
equations of motion for the tree-topology sub-system can be expressed as

M(θ) θ̈̈̈ + C(θ, θ̇̇̇) = T (1)

where the configuration dependent, symmetric matrix M(θ) ∈ RN×N is the mass matrix of the system,
C(θ, θ̇̇̇) ∈ RN denotes the velocity dependent Coriolis and gyroscopic forces vector, and T ∈ RN denotes
the applied generalized forces. The mass matrix is positive-definite and invertible for tree-topology systems.

Let nc denote the dimensionality of the closure constraints on the system, Then there exists a Gc(θ, t) ∈
R

nc×N matrix and a U(t) ∈ R
nc vector that defines the velocity domain constraint equation for the

holonomic and non-holonomic closure constraints on the system as follows:

Gc(θ, t) θ̇̇̇ = U(t) (2)

This differential form of the constraints is also referred to as a Pfaffian form. We assume that Gc(θ, t) is a
full-rank matrix. Observe that Eq. 2 is linear in the θ̇̇̇ generalized velocity coordinates. These constraints
effectively reduce the independent generalized velocities for the system fromN to an (N−nc) dimensional
linear space,

The dynamics of closed-chain systems can be obtained by modifying the tree system dynamics in Eq. 1 to
include the effect of the closure constraints via Lagrange multipliers, λ ∈ Rnc , as follows2

M(θ) θ̈̈̈ + C(θ, θ̇̇̇) − G∗c(θ, t)λ = T

Gc(θ, t) θ̇̇̇ = U(t)
(3)

The −G∗c(θ, t)λ term in the first equation represents the internal generalized constraint forces from the
closure constraints.

By differentiating the constraint equation, Eq. 3 can be rearranged into the following descriptor form:
�

M G∗c

Gc 0

� �
θ̈̈̈

−λ

�

=

�
T − C

Ú

�

where Ú
�
= U̇̇̇(t) − Ġ̇̇c θ̇̇̇ ∈ R

nc (4)

One approach to solving the closed-chain dynamics equations of motion is to assemble the matrix on the left
and the vector on the right in Eq. 4 and solve the linear matrix equation for the θ̈̈̈ generalized accelerations.
This is especially attractive for the FAmodel, since theMmatrix for this case is block diagonal and constant.
Indeed, the whole matrix is highly sparse for this case. This approach is analyzed in detail in reference [17].
We on the other hand pursue an alternative Schur complement-based solution approach for the FA and TA
models as described in the following lemma.

Lemma 1. Augmented closed-chain forward dynamics solution
The closed-chain dynamics generalized accelerations in Eq. 4 can be expressed as

θ̈̈̈ = θ̈̈̈f + θ̈̈̈δ (5)

where, the free generalized accelerations, θ̈̈̈f, the correction generalized accelerations, θ̈̈̈δ, and the La-
grange multipliers, λ, are given by

θ̈̈̈f

�
= M−1 (T − C) (6a)

λ = −
�
GcM−1G∗c

�
−1

γ where γ
�
= Gc θ̈̈̈f − Ú (6b)

θ̈̈̈δ

�
= M−1G∗c λ (6c)

2For a matrixA, theA∗ notation denotes its matrix transpose.



Proof. See [9, 15].

The θ̈̈̈f = M−1(T − C) term represents the generalized accelerations solution for the dynamics of the
tree system while ignoring the closure constraints and, is therefore referred to as the free generalized ac-
celerations. γ represents the acceleration-level constraint violation resulting from just the free dynamics
of the system. The GcM−1G∗c matrix in Eq. 6b is the Schur complement of the matrix on the left hand
side of Eq. 4. An intuitive interpretation of Eq. 6b is that the constraint error spatial accelerations from the
free-dynamics solution, together with the Schur complement matrix allow the computation of the constraint
forces necessary to nullify the errors. Once the constraint forces are available, Eq. 6c uses them to obtain
the generalized accelerations to correct the free system dynamics solution. In summary, the solution to the
closed-chain forward dynamics thus conceptually involves the following steps:

1. Solve Eq. 6a for the θ̈̈̈f free generalized accelerations.

2. Use θ̈̈̈f and the GcM−1G∗c Schur complement to solve for the λ Lagrange multipliers via Eq. 6b.

3. Use λ to solve Eq. 6c for the θ̈̈̈δ correction accelerations,

4. Compute the θ̈̈̈ generalized accelerations using Eq. 5.

Only the first step is needed when closure constraints are absent. One numerical consequence of the use of
non-minimal coordinates and closure constraints is that differential-algebraic equation (DAE) integrators,
instead of the ODE integrators for tree systems, are required for the numerical integration of the acceler-
ations and velocities [1, 17]. Furthermore, error control techniques are needed to manage the growth of
constraint errors that can cause the system state to drift off of the constraint manifold [2, 3, 17].

3 COMPUTATIONAL ALGORITHMS

The solution for the closed-chain equations of motion requires a step for solving the tree system equations
of motion, followed by solving for the constraint forces from the closure constraints, and finally a step to
correct for the effect of these correction forces. In this section we describe analytical results and structure-
based, low order computational algorithms for the key computationally demanding steps.

3.1 Tree Topology Dynamics

Using spatial operators one can obtain operator factorizations of the tree topology mass matrix and its
inverse as follows [9, 15]:

M = HφMφ∗H∗

= [I + HφK]D[I + HφK]∗

[I + HφK]−1 = I − HψK

M
−1 = [I − HψK]∗D−1[I − HψK]

(7)

The first expression defines the Newton-Euler operator factorization of the mass matrixM in terms of theH

hinge articulation, the φ rigid body propagation and the M link spatial inertia operators [8, 9]. While this
factorization has non-square factors, the second expression describes an alternative factorization involving
only square factors with block diagonal D and block lower-triangular [I + HφK] matrices. . The next
expression describes an analytical expression for the inverse of the [I+HφK] operator. Using this equation
leads to the final analytical expression for the inverse of the mass matrix. These operator expressions hold
generally for tree-topology systems irrespective of the number of bodies, the types of hinges, the specific
topological structure and even for the case of non-rigid links [9]. The spatial operators ψ, D correspond
to a suitably defined spatially recursive Kalman filter, with the spatial operator K representing the Kalman
gain for this filter. We also refer to these operators ψ, D and K as"articulated" quantities, because of their
relationship to the articulated inertias first introduced by [4].



Using the expression for the mass matrix inverse in Eq. 7, and some additional spatial operator identities, it
can be shown that [7]

θ̈̈̈
1
= M−1(T − C)

7
= [I − HψK]∗D−1[I − HψK](T − C)

= [I − HψK]∗D−1
�
T − Hψ[KT + Pa + b]

�
− K∗ψ∗a

(8)

The articulated body (AB) forward dynamics algorithm is a well known structure-based O(N) procedure
for evaluating θ̈̈̈ in Eq. 8 [5, 9]. The algorithm consists of multiple recursive sweeps across the tree links.
This tree forward dynamics algorithm does not require the explicit computation of either M or C or of any
of the spatial operators.

3.2 Closed-Chain Dynamics with Loop Constraints

Let us assume that the closed-chain constraints are loop constraints on the spatial velocities of a set of
closure nodes. Let Vnd denote the spatial velocities of these closure nodes. Then for some matrix Q that
describes the geometric nature of the closures, the closure constraints (holonomic or non-holonomic) can
be expressed as

QVnd − U = QJ θ̇̇̇ − U = 0 (9)

with J denoting the velocity Jacobian matrix for these constraint nodes on the system. Using Eq. 2 and the
J = B

∗φ∗H∗ operator expression3 for the Jacobian matrix [9], we can identify Gc as

Gc = QJ = QB
∗φ∗H∗ (10)

This specific form for Gc allows us to simplify the expressions in Lemma 1, as described in the following
lemma.

Lemma 2. Forward dynamics with loop constraints
The generalized accelerations for a closed-chain system with loop constraints, given by Eq. 10, is

θ̈̈̈ = θ̈̈̈f + θ̈̈̈δ (11)

where, the free generalized accelerations, θ̈̈̈f, the correction generalized accelerations, θ̈̈̈δ, and the
Lagrange multipliers, λ, are given by

θ̈̈̈f

�
= [I − HψK]∗D−1

�
T − Hψ[KT + Pa + b]

�
− K∗ψ∗a (12a)

λ = −[QΛQ
∗]−1γ where γ(θ, t)

�
= Qαf

nd − U̇̇̇(t) + Q̇̇̇Vnd (12b)

θ̈̈̈δ

�
= [I − HψK]∗D−1HψBQ

∗λ (12c)

with αf

nd
denotes the spatial accelerations of the constraint nodes for the free-dynamics solution of Eq. 12a,

and Λ
�
= B

∗ΩB with Ω
�
= ψ∗H∗D−1ψH.

Proof. See [9, 15].

This lemma provides explicit operator expressions for the constraint forces and the generalized accelerations
which form the basis of structure-based, low-order computational algorithms for solving the closed-chain
dynamics. We have already observed in section 3.1 that Eq. 12a can be evaluated using the low-orderO(N)

AB forward dynamics algorithm. In addition, Eq. 12b uses the QΛQ
∗ expression for the Schur complement

that unlike Eq. 6b does not require the the mass matrix inverse. Low-order algorithms for computing the
Schur complement are discussed in section 3.3. The computational algorithms and steps for the solution of
the closed-chain dynamics with loop constraints in Lemma 2 are summarized below:

1. Solve for θ̈̈̈f in Eq. 12a using the O(N) AB forward dynamics algorithm. This also results in the
computation of the articulated body inertia quantities and the αf

nd
node spatial accelerations required

by Eq. 12b.

3B is a pick-off operator defined in reference [9].



2. Compute Λ using the procedure in section 3.3 and solve the Eq. 12b matrix equation for the λ La-
grange multipliers.

3. Use the O(N) AB algorithm to compute θ̈̈̈δ = [I − HψK]∗D−1HψBQ
∗λ.

4. Use Eq. 11 to compute θ̈̈̈.

This procedure is of O(N) computational complexity, except for the step involving the solution of the
Eq. 12b matrix equation which can be cubic in the number of constraints. This procedure is directly appli-
cable to solving the closed-chain dynamics equations of motion using either of the FA or TA models. The
only difference between these methods is the specific nature of the tree sub-system and the set of closure
constraints in the underlying models.

The CE model on the other hand is a tree-topology system that does not include any closure constraints.
This tree-topology model is obtained by aggregating the bodies associated with the closure constraints into
variable geometry bodies. The aggregation process is carried out in a way such that the transformed system’s
topology is that of a tree. The detailed description of the procedure for constraint embedding is described
in [9, 10]. Due to the tree-topology structure of the resulting model, the solution to its equations of motion
only requires the AB algorithm. Due to the more complex nature of the aggregated bodies, the recursive
forward dynamics steps in processing these bodies are more expensive and the computational cost scales as
the square of the number of combined degrees of freedom for the bodies within the aggregated bodies.

3.3 Schur Complement Matrix Computation

Even though the mass matrix inverse is no longer needed, one of the computational bottlenecks in the
procedure described above, is the evaluation of the Λ Schur complement matrix required for obtaining the
constraint forces. The brute force evaluation of Ω and Λ = B

∗ΩB is computationally very expensive and
scales as the cube of the number of degrees of freedom in the system. However, this Schur complement
matrix is mathematically identical to the operational space inertia matrix used in robot system control
[14] and structure-based, low-order algorithms for computing it have been developed using spatial operator
techniques [9, 12, 16]. These algorithms exploit a decomposition of the Ω matrix into a disjoint sum of
a diagonal, and upper and lower triangular matrices, and a highly sparse matrix. This decomposition has
the additional special property that all the matrices in the decomposition can be derived from the diagonal
matrix. The overall computational complexity of this structure-based algorithm is just quadratic in nc.

4 NUMERICAL VALIDATION

We have used simulations for the following standard closed-chain mechanisms [6] to cross-validate the FA,
TA and CE dynamics solution techniques:

1. Planar crank slider mechanism: The planar crank slider mechanism (Figure 3a) is a 3 body sys-
tem with 3 tree degrees of freedom and a single 1 degree of freedom closure loop constraint. The
mechanism has single degree of freedom rotary and prismatic hinges.

(a) Planar Crank
Slider

(b) Quick Return (c) Planar Four
Bar

(d) Spatial Four
Bar

(e) Spatial Crank
Slider

Figure 3: Closed-loop mechanisms used for cross-validating the FA, TA and CE dynamics algorithms.



(a) Planar Four Bar (b) Spatial Crank Slider

Figure 4: Plots of generalized coordinate trajectories over time from simulation runs using the FA,
TA and CE methods using 0.1ms integration time step. The plot on the left is for one of the angle
coordinates for the planar four bar mechanism, while the one on the right is for the position of
the slider for the spatial crank slider mechanism. The trajectories from the 3 methods are in close
agreement and are hence indistinguishable in the plots.

2. Planar quick return mechanism: The planar quick return mechanism (Figure 3b) is a 5 body system
with 5 tree degrees of freedom and two 1 degree of freedom closure loop constraints. The mechanism
has single degree of freedom rotary and prismatic hinges.

3. Planar four-bar mechanism: The planar four-bar mechanism (Figure 3c) is a 4 body system with
3 tree degrees of freedom and a single 1 degree of freedom closure loop constraint. The mechanism
has single degree of freedom rotary hinges.

4. Spatial four-bar mechanism: The spatial four-bar mechanism (Figure 3d) is a 4 body system with
4 tree degrees of freedom and a single 3 degree of freedom closure loop constraint. The mechanism
has single degree of freedom rotary hinge, a 2 degree of freedom universal joint hinge and a 3 degree
of freedom spherical joint.

5. Spatial crank slider mechanism: The spatial crank slider mechanism (Figure 3e) is a 4 body system
with 6 tree degrees of freedom and a single 1 degree of freedom closure loop constraint. The mecha-
nism has a single degree of freedom rotary and prismatic hinges and a 3 degree of freedom spherical
joint.

In each of these simulation examples, a steady torque is applied at one of the joints to drive the dynamics,
and an explicit RK4 integrator is used to integrate the dynamics solution. Figure 3 shows example trajectory
plots for the position of selected points on the mechanisms. The trajectories from all of the solution methods
tracked each other closely and helped to cross-validate the solution methods.

5 COMPUTATIONAL PERFORMANCE

In this section we use simulations of NASA’s Lunar Electric Rover (LER) vehicle shown in Figure 5a to
compare the computational performance of the three methods. The LER is a 6-wheeled rover, with each
wheel mounted via an independent wishbone suspension consisting of a planar four-bar linkage. Overall,
this larger vehicle model contains 31 bodies. The simulation model uses a free-floating model of the vehicle
under a gravitational field. The wishbone suspensions are spring loaded to support the weight of the vehicle.
In the simulation run, out of phase sinusoidal forces are applied to the wheels to mimic terrain interaction
forces. The effect is to induce a periodic motion in each of the suspension elements and an overall rotation
of the vehicle. Overall, eight different methods were used to carry out the simulation. Two of these were
variants of the CE method, with one using an analytic solution for the four-bar linkage kinematics, while the
other one used a numerical iterative procedure. Three variants of each of the TA and FA methods were used.
One variant used no constraint error control, while the others used the Baumgarte and inverse kinematics
(IK) based projection error control techniques [3]. Figure 5b shows the time trajectory of points on the
vehicle from solving the dynamics using all the methods. The results from all of the methods showed good
agreement.



(a) LER Vehicle (b) LER Vehicle Positions

Figure 5: A simulation of the LER vehicle using the FA, TA and CE methods. The plot on the right shows
the time history of the displacements of three points on the vehicle. The close agreement of the trajectories
across the methods makes them indistinguishable in the plot.

Figure 6 is a log-log scatter plot that compares the computational and numerical performance of the different
methods for a 1s simulation of the vehicle using a fixed step, explicit RK4 integrator. Each of the points
represents a different method and integration time step combination. The X axis displays the wall clock time
for each of the methods. The Y axis for the left plot displays the constraint violation errors. It shows that
the CE method has the best error and speed performance, followed by that of the TA method with the FA
method showing a significant drop in computational speed for similar error performance. Also, as expected,
the computational cost increases as the time step is decreased,and the inverse kinematics projection based
constraint error control is somewhat more expensive than the Baumgarte method. The scatter plot on the
right tells a similar story, except that the Y axis this time is a measure of the fidelity error. Simulation results
from .01ms integration time step runs showed good agreement across the different methods, and were used
as the baseline to compute the fidelity errors for the other runs. A simulation duration of 1s was used for
these comparisons because longer simulation runs showed similar trends, but with increased failures from
constraint error growth for the TA and FA methods. Table 1 summarizes the specific performance values
for a 1ms integration time step simulations.

Method Tree
dofs

Constraints
size

Constraint
error

Fidelity
error

Normalized
wall clock time

CE (analytic) 24 0 1.3069e−31 0.00563109 1.0000

CE (non-analytic) 24 0 3.7367e−15 0.00563108 1.7296

TA (no error control) 36 12 5.2351e−13 0.00563094 1.6007

TA w/ Baumgarte 36 12 1.3466e−13 0.00563121 1.6362

TA w/ projection 36 12 5.2175e−13 0.00999659 1.5907

FA (no error control) 186 162 2.4183e−09 0.02183112 59.4236

FA w/ Baumgarte 186 162 5.7032e−11 0.01082618 59.4648

FA w/ projection 186 162 Incomplete - -

Table 1: Model parameters for the FA, TA and CE methods for the LER vehicle simulation, together with
a comparison of the constraint error, fidelity error and simulation wall clock time across the methods for a
1ms time step, 3s long simulation run.

6 CONCLUSIONS

In this article, we have studied and compared the performance of the FA, TA and CE approaches for solving
closed-chain dynamics. While the TA and CE models are more complex, we have shown that the use
of structure based recursive algorithms can be used to address the added complexity, while significantly
improving computational and numerical performance. In particular, we have used theO(N) articulated body



(a) LER Constraint Errors Scatter Plot (b) LER Fidelity Scatter Plot

Figure 6: Scatter plots comparing the performance of the FA, TA and CE techniques for simulating the
dynamics of the LER vehicle. Three variants of the TA and FA methods were used: with no error control,
with Baumgarte error control, and with inverse kinematics (IK) projection after each time step. Two variants
of the CE method were used; with analytic and iterative solution of the four-bar kinematics. For each
method, the simulation was run with time steps of 2ms, 1ms, .25ms, .1ms and 0.04ms, with the smaller
symbols denoting smaller time steps. The plot on the left shows the average constraint violation error
versus wall clock time for different methods. The figure on the right is a similar scatter plot but with the Y
axis showing the fidelity error for each of the methods. Both plots show that reducing the time step reduced
errors but increased the computational cost. The analytical CE method out performs the other methods,
while the FA methods perform poorly compared to the others.

forward dynamics algorithm for solving the tree-topology dynamics, along with the structure-based, low-
order operational space inertia algorithm for computing the Schur complement matrix needed for computing
the constraint forces.

Numerical experiments to validate each of the methods show very good agreement across a variety of stan-
dard closed-chain mechanism problems. A larger 6-wheeled LER vehicle model was used for a detailed
comparison of the performance of each of the methods. A comparison of the error performance and com-
putational time across the methods showed the CE method as having the best performance, the FA method
significantly worse performance, with the TA method being in the middle.These comparisons show that by
taking advantage of structure-based low-order algorithms, the added complexity of the hinge-based methods
is well rewarded by significantly superior performance over constraint-based methods. Similar formulation
and performance issues have been examined for multibody systems with both closure constraints as well as
contact (unilateral) constraints [11].

The system topology plays a significant role in the choosing between the CE and TA methods. The compu-
tational cost of the CE method is cubic in the number of degrees of freedom within the embedded loops. On
the other hand, the computational cost of the TA method is cubic in the total number of closure constraints.
Thus, the CE method is preferable for closed-chain systems with small size loops. On the other hand, the
TA method is suitable for systems with a small number of large loops. In general, a hybrid combination of
the TA and CE techniques will provide the optimal performance. In this approach, the small loops can be
aggregated using the CE approach, while the large loops can be cut along the lines of the TA approach. In
future work we plan to study such hybrid schemes, as well as simulation performance for a broader family
of variable-step, implicit and DAE integrators.
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